1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756 |
 
 
 
x80
x80
x80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x80
x419
x80
 
 
 
 
 
 
 
 
 
 
x80
x419
x420
x420
 
x420
x757
x419
 
x80
x160
x160
x160
x160
 
x163
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
x160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x80
x80
 
 
 
x80
x80
x118
x118
x118
x131
x131
x131
 
x131
x141
x131
x134
x134
x134
x134
 
x134
x134
x134
x155
x155
x155
x155
x155
x155
x155
 
x155
x164
x164
x164
x155
x164
x164
x164
x155
x134
x134
x118
x143
x143
x143
x143
x143
x118
x118
x118
x118
x118
x118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x790
x790
 
x80
x1142
x1142
x3494
x3494
x3494
x3494
x3494
x1142
x1142
 
x80
x307
x307
x307
 
 
 
 
 
x307
x307
x307
x307
x307
x427
x427
x427
x427
x307
x414
x414
x307
x307
x307
 
x80
x80
x80
 
x1986
x4184
x4184
x4184
x3888
x5498
x5498
x9018
x9018
x9018
x9018
x14446
x12536
x14022
x14022
x14022
x14022
x9018
x5498
x2110
x1986
 
 
x80
x80
 
 
 
 
 
x439
x439
x439
 
x439
x439
 
x439
x439
x504
x439
x733
x733
x439
 
x522
x522
x522
x522
 
x439
x439
x439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x468
x468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x186
x186
x186
x186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x678
x678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x416
x416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x239
x239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x83
x83
x83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x439
x439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x386
x386
x386
x4000
x5807
x5807
x5807
x5807
x5807
x5807
x5807
x4000
x386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x89
x89
x89
x243
x320
x320
x320
x320
x320
x320
x320
x243
x89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x337
x337
x337
x1843
x1843
x1843
x1843
x1843
x337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x89
x89
x89
x89
x278
x355
x355
x278
x390
x390
x425
x390
x467
x467
x467
x390
x278
x89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x80
x331
x331
x331
x1826
x1826
x1826
x1826
x1826
x331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
x160
x377
x377
x80 |
I
|
// Copyright 2018-2025 the Deno authors. MIT license.
// This module is browser compatible.
import { ascend } from "./comparators.ts";
import { BinarySearchNode } from "./_binary_search_node.ts";
import { internals } from "./_binary_search_tree_internals.ts";
type Direction = "left" | "right";
/**
* An unbalanced binary search tree. The values are in ascending order by default,
* using JavaScript's built-in comparison operators to sort the values.
*
* For performance, it's recommended that you use a self-balancing binary search
* tree instead of this one unless you are extending this to create a
* self-balancing tree. See {@link RedBlackTree} for an example of how BinarySearchTree
* can be extended to create a self-balancing binary search tree.
*
* | Method | Average Case | Worst Case |
* | ------------- | ------------ | ---------- |
* | find(value) | O(log n) | O(n) |
* | insert(value) | O(log n) | O(n) |
* | remove(value) | O(log n) | O(n) |
* | min() | O(log n) | O(n) |
* | max() | O(log n) | O(n) |
*
* @example Usage
* ```ts
* import {
* BinarySearchTree,
* ascend,
* descend,
* } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const values = [3, 10, 13, 4, 6, 7, 1, 14];
* const tree = new BinarySearchTree<number>();
* values.forEach((value) => tree.insert(value));
* assertEquals([...tree], [1, 3, 4, 6, 7, 10, 13, 14]);
* assertEquals(tree.min(), 1);
* assertEquals(tree.max(), 14);
* assertEquals(tree.find(42), null);
* assertEquals(tree.find(7), 7);
* assertEquals(tree.remove(42), false);
* assertEquals(tree.remove(7), true);
* assertEquals([...tree], [1, 3, 4, 6, 10, 13, 14]);
*
* const invertedTree = new BinarySearchTree<number>(descend);
* values.forEach((value) => invertedTree.insert(value));
* assertEquals([...invertedTree], [14, 13, 10, 7, 6, 4, 3, 1]);
* assertEquals(invertedTree.min(), 14);
* assertEquals(invertedTree.max(), 1);
* assertEquals(invertedTree.find(42), null);
* assertEquals(invertedTree.find(7), 7);
* assertEquals(invertedTree.remove(42), false);
* assertEquals(invertedTree.remove(7), true);
* assertEquals([...invertedTree], [14, 13, 10, 6, 4, 3, 1]);
*
* const words = new BinarySearchTree<string>((a, b) =>
* ascend(a.length, b.length) || ascend(a, b)
* );
* ["truck", "car", "helicopter", "tank", "train", "suv", "semi", "van"]
* .forEach((value) => words.insert(value));
* assertEquals([...words], [
* "car",
* "suv",
* "van",
* "semi",
* "tank",
* "train",
* "truck",
* "helicopter",
* ]);
* assertEquals(words.min(), "car");
* assertEquals(words.max(), "helicopter");
* assertEquals(words.find("scooter"), null);
* assertEquals(words.find("tank"), "tank");
* assertEquals(words.remove("scooter"), false);
* assertEquals(words.remove("tank"), true);
* assertEquals([...words], [
* "car",
* "suv",
* "van",
* "semi",
* "train",
* "truck",
* "helicopter",
* ]);
* ```
*
* @typeparam T The type of the values stored in the binary search tree.
*/
export class BinarySearchTree<T> implements Iterable<T> {
#root: BinarySearchNode<T> | null = null;
#size = 0;
#compare: (a: T, b: T) => number;
/**
* Construct an empty binary search tree.
*
* To create a binary search tree from an array like, an iterable object, or an
* existing binary search tree, use the {@link BinarySearchTree.from} method.
*
* @param compare A custom comparison function to sort the values in the tree.
* By default, the values are sorted in ascending order.
*/
constructor(compare: (a: T, b: T) => number = ascend) {
if (typeof compare !== "function") {
throw new TypeError(
"Cannot construct a BinarySearchTree: the 'compare' parameter is not a function, did you mean to call BinarySearchTree.from?",
);
}
this.#compare = compare;
}
static {
internals.getRoot = <T>(tree: BinarySearchTree<T>) => tree.#root;
internals.setRoot = <T>(
tree: BinarySearchTree<T>,
node: BinarySearchNode<T> | null,
) => {
tree.#root = node;
};
internals.getCompare = <T>(tree: BinarySearchTree<T>) => tree.#compare;
internals.findNode = <T>(
tree: BinarySearchTree<T>,
value: T,
): BinarySearchNode<T> | null => tree.#findNode(value);
internals.rotateNode = <T>(
tree: BinarySearchTree<T>,
node: BinarySearchNode<T>,
direction: Direction,
) => tree.#rotateNode(node, direction);
internals.insertNode = <T>(
tree: BinarySearchTree<T>,
Node: typeof BinarySearchNode,
value: T,
): BinarySearchNode<T> | null => tree.#insertNode(Node, value);
internals.removeNode = <T>(
tree: BinarySearchTree<T>,
node: BinarySearchNode<T>,
): BinarySearchNode<T> | null => tree.#removeNode(node);
internals.setSize = <T>(tree: BinarySearchTree<T>, size: number) =>
tree.#size = size;
}
/**
* Creates a new binary search tree from an array like, an iterable object,
* or an existing binary search tree.
*
* A custom comparison function can be provided to sort the values in a
* specific order. By default, the values are sorted in ascending order,
* unless a {@link BinarySearchTree} is passed, in which case the comparison
* function is copied from the input tree.
*
* @example Creating a binary search tree from an array like
* ```ts no-assert
* import { BinarySearchTree } from "@std/data-structures";
*
* const tree = BinarySearchTree.from<number>([42, 43, 41]);
* ```
*
* @example Creating a binary search tree from an iterable object
* ```ts no-assert
* import { BinarySearchTree } from "@std/data-structures";
*
* const tree = BinarySearchTree.from<number>((function*() {
* yield 42;
* yield 43;
* yield 41;
* })());
* ```
*
* @example Creating a binary search tree from an existing binary search tree
* ```ts no-assert
* import { BinarySearchTree } from "@std/data-structures";
*
* const tree = BinarySearchTree.from<number>([42, 43, 41]);
* const copy = BinarySearchTree.from(tree);
* ```
*
* @example Creating a binary search tree from an array like with a custom comparison function
* ```ts no-assert
* import { BinarySearchTree, descend } from "@std/data-structures";
*
* const tree = BinarySearchTree.from<number>(
* [42, 43, 41],
* { compare: descend }
* );
* ```
*
* @typeparam T The type of the values stored in the binary search tree.
* @param collection An array like, an iterable, or existing binary search tree.
* @param options An optional options object to customize the comparison function.
* @returns A new binary search tree created from the passed collection.
*/
static from<T>(
collection: ArrayLike<T> | Iterable<T> | BinarySearchTree<T>,
options?: {
compare?: (a: T, b: T) => number;
},
): BinarySearchTree<T>;
/**
* Create a new binary search tree from an array like, an iterable object, or
* an existing binary search tree.
*
* A custom mapping function can be provided to transform the values before
* inserting them into the tree.
*
* A custom comparison function can be provided to sort the values in a
* specific order. A custom mapping function can be provided to transform the
* values before inserting them into the tree. By default, the values are
* sorted in ascending order, unless a {@link BinarySearchTree} is passed, in
* which case the comparison function is copied from the input tree. The
* comparison operator is used to sort the values in the tree after mapping
* the values.
*
* @example Creating a binary search tree from an array like with a custom mapping function
* ```ts no-assert
* import { BinarySearchTree } from "@std/data-structures";
*
* const tree = BinarySearchTree.from<number, string>(
* [42, 43, 41],
* { map: (value) => value.toString() }
* );
* ```
*
* @typeparam T The type of the values in the passed collection.
* @typeparam U The type of the values stored in the binary search tree.
* @typeparam V The type of the `this` value when calling the mapping function. Defaults to `undefined`.
* @param collection An array like, an iterable, or existing binary search tree.
* @param options The options object to customize the mapping and comparison functions. The `thisArg` property can be used to set the `this` value when calling the mapping function.
* @returns A new binary search tree containing the mapped values from the passed collection.
*/
static from<T, U, V = undefined>(
collection: ArrayLike<T> | Iterable<T> | BinarySearchTree<T>,
options: {
compare?: (a: U, b: U) => number;
map: (value: T, index: number) => U;
thisArg?: V;
},
): BinarySearchTree<U>;
static from<T, U, V>(
collection: ArrayLike<T> | Iterable<T> | BinarySearchTree<T>,
options?: {
compare?: (a: U, b: U) => number;
map?: (value: T, index: number) => U;
thisArg?: V;
},
): BinarySearchTree<U> {
let result: BinarySearchTree<U>;
let unmappedValues: ArrayLike<T> | Iterable<T> = [];
if (collection instanceof BinarySearchTree) {
result = new BinarySearchTree(
options?.compare ??
(collection as unknown as BinarySearchTree<U>).#compare,
);
if (options?.compare || options?.map) {
unmappedValues = collection;
} else {
const nodes: BinarySearchNode<U>[] = [];
if (collection.#root) {
result.#root = BinarySearchNode.from(
collection.#root as unknown as BinarySearchNode<U>,
);
nodes.push(result.#root);
}
while (nodes.length) {
const node: BinarySearchNode<U> = nodes.pop()!;
const left: BinarySearchNode<U> | null = node.left
? BinarySearchNode.from(node.left)
: null;
const right: BinarySearchNode<U> | null = node.right
? BinarySearchNode.from(node.right)
: null;
if (left) {
left.parent = node;
nodes.push(left);
}
if (right) {
right.parent = node;
nodes.push(right);
}
}
result.#size = collection.#size;
}
} else {
result = (options?.compare
? new BinarySearchTree(options.compare)
: new BinarySearchTree()) as BinarySearchTree<U>;
unmappedValues = collection;
}
const values: Iterable<U> = options?.map
? Array.from(unmappedValues, options.map, options.thisArg)
: unmappedValues as U[];
for (const value of values) result.insert(value);
return result;
}
/**
* The count of values stored in the binary search tree.
*
* The complexity of this operation is O(1).
*
* @example Getting the size of the tree
* ```ts no-assert
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from<number>([42, 43, 41]);
*
* assertEquals(tree.size, 3);
* ```
*
* @returns The count of values stored in the binary search tree.
*/
get size(): number {
return this.#size;
}
#findNode(value: T): BinarySearchNode<T> | null {
let node: BinarySearchNode<T> | null = this.#root;
while (node) {
const order: number = this.#compare(value as T, node.value);
if (order === 0) break;
const direction: "left" | "right" = order < 0 ? "left" : "right";
node = node[direction];
}
return node;
}
#rotateNode(node: BinarySearchNode<T>, direction: Direction) {
const replacementDirection: Direction = direction === "left"
? "right"
: "left";
if (!node[replacementDirection]) {
throw new TypeError(
`Cannot rotate ${direction} without ${replacementDirection} child`,
);
}
const replacement: BinarySearchNode<T> = node[replacementDirection]!;
node[replacementDirection] = replacement[direction] ?? null;
if (replacement[direction]) replacement[direction]!.parent = node;
replacement.parent = node.parent;
if (node.parent) {
const parentDirection: Direction = node === node.parent[direction]
? direction
: replacementDirection;
node.parent[parentDirection] = replacement;
} else {
this.#root = replacement;
}
replacement[direction] = node;
node.parent = replacement;
}
#insertNode(
Node: typeof BinarySearchNode,
value: T,
): BinarySearchNode<T> | null {
if (!this.#root) {
this.#root = new Node(null, value);
this.#size++;
return this.#root;
} else {
let node: BinarySearchNode<T> = this.#root;
while (true) {
const order: number = this.#compare(value, node.value);
if (order === 0) break;
const direction: Direction = order < 0 ? "left" : "right";
if (node[direction]) {
node = node[direction]!;
} else {
node[direction] = new Node(node, value);
this.#size++;
return node[direction];
}
}
}
return null;
}
/** Removes the given node, and returns the node that was physically removed from the tree. */
#removeNode(
node: BinarySearchNode<T>,
): BinarySearchNode<T> | null {
/**
* The node to physically remove from the tree.
* Guaranteed to have at most one child.
*/
const flaggedNode: BinarySearchNode<T> | null = !node.left || !node.right
? node
: node.findSuccessorNode()!;
/** Replaces the flagged node. */
const replacementNode: BinarySearchNode<T> | null = flaggedNode.left ??
flaggedNode.right;
if (replacementNode) replacementNode.parent = flaggedNode.parent;
if (!flaggedNode.parent) {
this.#root = replacementNode;
} else {
flaggedNode.parent[flaggedNode.directionFromParent()!] = replacementNode;
}
if (flaggedNode !== node) {
/** Swaps values, in case value of the removed node is still needed by consumer. */
const swapValue = node.value;
node.value = flaggedNode.value;
flaggedNode.value = swapValue;
}
this.#size--;
return flaggedNode;
}
/**
* Add a value to the binary search tree if it does not already exist in the
* tree.
*
* The complexity of this operation is on average O(log n), where n is the
* number of values in the tree. In the worst case, the complexity is O(n).
*
* @example Inserting values into the tree
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = new BinarySearchTree<number>();
*
* assertEquals(tree.insert(42), true);
* assertEquals(tree.insert(42), false);
* ```
*
* @param value The value to insert into the binary search tree.
* @returns `true` if the value was inserted, `false` if the value already exists in the tree.
*/
insert(value: T): boolean {
return !!this.#insertNode(BinarySearchNode, value);
}
/**
* Remove a value from the binary search tree if it exists in the tree.
*
* The complexity of this operation is on average O(log n), where n is the
* number of values in the tree. In the worst case, the complexity is O(n).
*
* @example Removing values from the tree
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from<number>([42]);
*
* assertEquals(tree.remove(42), true);
* assertEquals(tree.remove(42), false);
* ```
*
* @param value The value to remove from the binary search tree.
* @returns `true` if the value was found and removed, `false` if the value was not found in the tree.
*/
remove(value: T): boolean {
const node: BinarySearchNode<T> | null = this.#findNode(value);
if (node) this.#removeNode(node);
return node !== null;
}
/**
* Check if a value exists in the binary search tree.
*
* The complexity of this operation depends on the underlying structure of the
* tree. Refer to the documentation of the structure itself for more details.
*
* @example Finding values in the tree
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from<number>([42]);
*
* assertEquals(tree.find(42), 42);
* assertEquals(tree.find(43), null);
* ```
*
* @param value The value to search for in the binary search tree.
* @returns The value if it was found, or null if not found.
*/
find(value: T): T | null {
return this.#findNode(value)?.value ?? null;
}
/**
* Retrieve the lowest (left most) value in the binary search tree, or null if
* the tree is empty.
*
* The complexity of this operation depends on the underlying structure of the
* tree. Refer to the documentation of the structure itself for more details.
*
* @example Finding the minimum value in the tree
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from<number>([42, 43, 41]);
*
* assertEquals(tree.min(), 41);
* ```
*
* @returns The minimum value in the binary search tree, or null if the tree is empty.
*/
min(): T | null {
return this.#root ? this.#root.findMinNode().value : null;
}
/**
* Retrieve the highest (right most) value in the binary search tree, or null
* if the tree is empty.
*
* The complexity of this operation depends on the underlying structure of the
* tree. Refer to the documentation of the structure itself for more details.
*
* @example Finding the maximum value in the tree
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from<number>([42, 43, 41]);
*
* assertEquals(tree.max(), 43);
* ```
*
* @returns The maximum value in the binary search tree, or null if the tree is empty.
*/
max(): T | null {
return this.#root ? this.#root.findMaxNode().value : null;
}
/**
* Remove all values from the binary search tree.
*
* The complexity of this operation is O(1).
*
* @example Clearing the tree
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from<number>([42, 43, 41]);
* tree.clear();
*
* assertEquals(tree.size, 0);
* assertEquals(tree.find(42), null);
* ```
*/
clear() {
this.#root = null;
this.#size = 0;
}
/**
* Check if the binary search tree is empty.
*
* The complexity of this operation is O(1).
*
* @example Checking if the tree is empty
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = new BinarySearchTree<number>();
*
* assertEquals(tree.isEmpty(), true);
*
* tree.insert(42);
*
* assertEquals(tree.isEmpty(), false);
* ```
*
* @returns `true` if the binary search tree is empty, `false` otherwise.
*/
isEmpty(): boolean {
return this.size === 0;
}
/**
* Create an iterator over this tree that traverses the tree in-order (LNR,
* Left-Node-Right).
*
* @example Using the in-order LNR iterator
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from([4, 1, 2, 5, 3]);
*
* assertEquals([...tree.lnrValues()], [1, 2, 3, 4, 5]);
* ```
*
* @returns An iterator that traverses the tree in-order (LNR).
*/
*lnrValues(): IterableIterator<T> {
const nodes: BinarySearchNode<T>[] = [];
let node: BinarySearchNode<T> | null = this.#root;
while (nodes.length || node) {
if (node) {
nodes.push(node);
node = node.left;
} else {
node = nodes.pop()!;
yield node.value;
node = node.right;
}
}
}
/**
* Create an iterator over this tree that traverses the tree in reverse
* in-order (RNL, Right-Node-Left).
*
* @example Using the reverse in-order RNL iterator
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from([4, 1, 2, 5, 3]);
* [...tree.rnlValues()] // 5, 4, 3, 2, 1
* ```
*
* @returns An iterator that traverses the tree in reverse in-order (RNL).
*/
*rnlValues(): IterableIterator<T> {
const nodes: BinarySearchNode<T>[] = [];
let node: BinarySearchNode<T> | null = this.#root;
while (nodes.length || node) {
if (node) {
nodes.push(node);
node = node.right;
} else {
node = nodes.pop()!;
yield node.value;
node = node.left;
}
}
}
/**
* Create an iterator over this tree that traverses the tree in pre-order (NLR,
* Node-Left-Right).
*
* @example Using the pre-order NLR iterator
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from([4, 1, 2, 5, 3]);
*
* assertEquals([...tree.nlrValues()], [4, 1, 2, 3, 5]);
* ```
*
* @returns An iterator that traverses the tree in pre-order (NLR).
*/
*nlrValues(): IterableIterator<T> {
const nodes: BinarySearchNode<T>[] = [];
if (this.#root) nodes.push(this.#root);
while (nodes.length) {
const node: BinarySearchNode<T> = nodes.pop()!;
yield node.value;
if (node.right) nodes.push(node.right);
if (node.left) nodes.push(node.left);
}
}
/**
* Create an iterator over this tree that traverses the tree in post-order (LRN,
* Left-Right-Node).
*
* @example Using the post-order LRN iterator
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from([4, 1, 2, 5, 3]);
*
* assertEquals([...tree.lrnValues()], [3, 2, 1, 5, 4]);
* ```
*
* @returns An iterator that traverses the tree in post-order (LRN).
*/
*lrnValues(): IterableIterator<T> {
const nodes: BinarySearchNode<T>[] = [];
let node: BinarySearchNode<T> | null = this.#root;
let lastNodeVisited: BinarySearchNode<T> | null = null;
while (nodes.length || node) {
if (node) {
nodes.push(node);
node = node.left;
} else {
const lastNode: BinarySearchNode<T> = nodes.at(-1)!;
if (lastNode.right && lastNode.right !== lastNodeVisited) {
node = lastNode.right;
} else {
yield lastNode.value;
lastNodeVisited = nodes.pop()!;
}
}
}
}
/**
* Create an iterator over this tree that traverses the tree in level-order (BFS,
* Breadth-First Search).
*
* @example Using the level-order BFS iterator
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from([4, 1, 2, 5, 3]);
*
* assertEquals([...tree.lvlValues()], [4, 1, 5, 2, 3]);
* ```
*
* @returns An iterator that traverses the tree in level-order (BFS).
*/
*lvlValues(): IterableIterator<T> {
const children: BinarySearchNode<T>[] = [];
let cursor: BinarySearchNode<T> | null = this.#root;
while (cursor) {
yield cursor.value;
if (cursor.left) children.push(cursor.left);
if (cursor.right) children.push(cursor.right);
cursor = children.shift() ?? null;
}
}
/**
* Create an iterator over this tree that traverses the tree in-order (LNR,
* Left-Node-Right).
*
* @example Using the in-order iterator
* ```ts
* import { BinarySearchTree } from "@std/data-structures";
* import { assertEquals } from "@std/assert";
*
* const tree = BinarySearchTree.from([4, 1, 2, 5, 3]);
*
* assertEquals([...tree], [1, 2, 3, 4, 5]);
* ```
*
* See {@link BinarySearchTree.prototype.lnrValues}.
*
* @returns An iterator that traverses the tree in-order (LNR).
*/
*[Symbol.iterator](): IterableIterator<T> {
yield* this.lnrValues();
}
}
|